Dr. Dre
Модератор
- Регистрация
- 02.10.20
- Сообщения
- 67,038
- Реакции
- 184,414
- #1
Голосов: 0
Исчерпывающее руководство по машинному (МО) и глубокому обучению с использованием языка программирования Python, фреймворка PyTorch и библиотеки scikit-learn. Рассмотрены основы МО, алгоритмы для задач классификации, классификаторы на основе scikit-learn, предварительная обработка и сжатие данных, современные методы оценки моделей и объединение различных моделей для ансамблевого обучения. Рассказано о применении МО для анализа текста и прогнозировании непрерывных целевых переменных с помощью регрессионного анализа, кластерном анализе и обучении без учителя, показано построение многослойной искусственной нейронной сети с нуля. Раскрыты продвинутые возможности PyTorch для решения сложных задач. Описано применение глубоких сверточных и рекуррентных нейронных сетей, трансформеров, генеративных состязательных и графовых нейронных сетей, Особое внимание уделено обучению с подкреплением для систем принятия решений в сложных средах.
Разрабатывайте модели машинного и глубокого обучения с помощью Python
Перед вами не только исчерпывающее руководство по машинному и глубокому обучению с использованием Python, фреймворка PyTorch и библиотеки scikit-learn. но и справочник, к которому вы будете постоянно возвращаться при создании систем машинного обучения. Книга подробно описывает все основные методы машинного обучения и содержит четкие пояснения, визуализации и примеры. Автор стремится научить читателя принципам самостоятельного создания моделей и приложений, а не просто следовать жестким инструкциям.Описаны новые дополнения к библиотеке scikit-learn. Рассмотрены различные методы машинного и глубокого обучения для классификации текста и изображений. Рассказано о генеративно-состязательных сетях (GAN) для синтеза новых данных и обучения интеллектуальных агентов Освещены последние тенденции в области глубокого обучения, включая введение в графовые нейронные сети и крупномасштабные преобразователи, используемые для обработки естественного языка (NLP). Книга будет полезна как начинающим разработчикам на Python, слабо знакомым с машинным обучением, так и опытным, желающим углубить свои знания.
Вы изучите:
- фреймворки, модели и методы машинного обучения, применимые к широкому кругу задач и наборов данных;
- библиотеку scikit-learn для машинного обучения и фреймворк PyTorch для глубокого обучения;
- приемы обучения классификаторов на изображениях, тексте и т. д.;
- средства создания и обучения нейронных сетей, преобразователей и графических нейронных сетей;
- передовые методы оценки и настройки моделей.
Вы сможете глубже понять:
- прогнозирование непрерывных целевых результатов с помощью регрессионного анализа;
- особенности текстовых данных и данных из социальных сетей с помощью тонального анализа.
Год издания: 2023 г.
Формат книги: PDF (скан)
Курс ведет: Себастьян Рашка и др.
О курсе от автора:
Скачать материалы курса:
Материал может быть удалён по требованию правообладателя
Похожие темы
- [Thinknetica] Владимир Дементьев ― Профилирование и оптимизация тестов Rails-приложений (2024)
- [Илья Карельцев] [Eccentric Games] Основы создания игры на Unity (2024)
- [Евгений Окулик] Автоматизация тестирования на Python. Тариф Без домашних заданий (2024)
- [Вадим Сайфутдинов] Создание бота Telegram. Обмен между 1С и мессенджером Telegram через API (2024)
- [AreaWeb] Laravel - лучшее, что сделал Тейлор (2024)
- [Stepik] Запросы в 1С: Углубленное изучение языка запросов (2024)
- [Purpleschool] Продвинутый Golang (2024)
- [Дмитрий Лаврик] Фреймворк Laravel (2024)
- [Дмитрий Елисеев] [deworker.pro] Большой стрим про SOLID и GRASP (2024)
- [Георгий Самойлов, Иван Ильченко] Горутины и каналы в Go: задачи с собеседований и паттерны (2024)