Dr. Dre
Модератор
- Регистрация
- 02.10.20
- Сообщения
- 67,056
- Реакции
- 133,597
- #1
Голосов: 0
ЧЕМ ЗАНИМАЮТСЯ ML-ИНЖЕНЕРЫ:
В современном мире бизнес сталкивается со многими проблемами, которые требуют неординарных решений. Например, как идентифицировать клиентов, которые хотят уйти, и сохранить их с помощью ценовых факторов?
Работа ML-инженера заключается в решении подобного рода задач и создании систем, которые работают лучше и быстрее, чем решения, сделанные простым человеком.
ДЛЯ КОГО ЭТА ПРОГРАММА:
УЖЕ РАБОТАЕТЕ В IT
Вы уже работаете в IT, но хотите перейти в новую сферу или расширить свои знания и навыки, чтобы применить их в различных областях машинного обучения.
СТАРТ КАРЬЕРЫ
Хотите изучить машинное обучение, но не знаете, с чего начать. Курс научит вас необходимой математической базе для работы в ML и даст навыки для старта карьеры.
ПРОГРАММА КУРСА :
1. ПРИКЛАДНАЯ РАЗРАБОТКА НА PYTHON
Python — один из самых популярных инструментов для анализа данных. В этом блоке мы научимся работать с этим языком, познакомимся с основными библиотеками для ML и узнаем, как грамотно использовать Python при командной работе. Также мы посвятим время изучению инструментов для работы с базами данных, как с помощью классического SQL, так и с помощью Python кода. Полученных знаний будет достаточно для работы не только в области анализа данных, но и в классической разработке на Python.
2. МАШИННОЕ ОБУЧЕНИЕ И ПРИЛОЖЕНИЯ
Классические методы машинного обучения — это основа для большинства современных способов анализа данных, например, для оптимизации банковского ценообразования. Мы изучим основной теоретический инструментарий для успешного построения ML-дизайна в острых проблемах реальной индустрии и отточим новые навыки на практике.
3. ОБЗОР ОСНОВ DEEP LEARNING
Глубинное обучение с использованием нейронных сетей появляется тогда, когда классические модели бессильны: детекция объектов с картинки, генерация осмысленного текста, определение тональности звуковой дорожки и многое другое. В данном курсе мы обзорно посмотрим на решения, которые можно сделать с помощью deep learning, и попробуем в них разобраться.
4. СТАТИСТИКА И A/B-ТЕСТЫ
В этом блоке мы изучим основные понятия математической статистики, необходимые для улучшения моделей. Научимся правильно проводить A/B тестирование, чтобы достоверно измерять влияние внедрения ML моделей на продукт и бизнес. Обсудим нюансы при проведении экспериментов и способы оценки метрик при невозможности проведения A/B-теста.
5. СОБЕСЕДОВАНИЯ И КАК ИХ ПРОЙТИ
В последнем блоке курса мы еще раз вспомним основные моменты из всего курса и обсудим, как проходят собеседования на младшего специалиста в машинном обучении, как к ним готовиться и как их проходить. Мы хотим поделиться своим опытом и помочь пройти первый этап в поиске профессии мечты.
ВАЖНО:
В личном кабинете отсутствует видеоурок теоретической части: лекция 9.2
В конспекте данный материал выдан полностью.
Курс ведет: Karpov.Courses
О курсе от автора:
Скачать материалы курса:
Материал может быть удалён по требованию правообладателя
Похожие темы
- [Thinknetica] Владимир Дементьев ― Профилирование и оптимизация тестов Rails-приложений (2024)
- [Илья Карельцев] [Eccentric Games] Основы создания игры на Unity (2024)
- [Евгений Окулик] Автоматизация тестирования на Python. Тариф Без домашних заданий (2024)
- [Вадим Сайфутдинов] Создание бота Telegram. Обмен между 1С и мессенджером Telegram через API (2024)
- [AreaWeb] Laravel - лучшее, что сделал Тейлор (2024)
- [Stepik] Запросы в 1С: Углубленное изучение языка запросов (2024)
- [Purpleschool] Продвинутый Golang (2024)
- [Дмитрий Лаврик] Фреймворк Laravel (2024)
- [Дмитрий Елисеев] [deworker.pro] Большой стрим про SOLID и GRASP (2024)
- [Георгий Самойлов, Иван Ильченко] Горутины и каналы в Go: задачи с собеседований и паттерны (2024)